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Abstract

Creating high-quality stereographic video from a low-
quality pair of video streams is a potent task in computa-
tional photography, with the potential to democratize the
recording of virtual reality experiences. We present a perfor-
mant application, which takes in a stereoscopic video stream,
computes a dense matching, learns a color transformation
and outputs a unified stream. We discuss our CUDA and
OpenMP implementations of scanline stereo. We thoroughly
profiled and optimized these implementations and present
our application.

1. Problem Setting
This project seeks to derive a coherent stereoscopic video

from a stereo pair of cameras that independently select expo-
sure and color balance settings.

With the increasing access to virtual reality headsets, the
capability to view stereoscopic video is growing rapidly.
Correspondingly, there is an increasing demand for the pro-
duction of stereo video.

Ideally, stereo video could be captured with inexpensive
USB webcams. These devices have problems that hinder
their suitability for capturing stereoscopic video, however.
The most inexpensive webcams available do not have the
capability to adjust exposure or color balance. Worse, they
produce heavily compressed, independently noisy output.

Computational tools that correct for these shortcomings
could dramatically widen access to the capability to create
stereoscopic video experiences.

1.1. Extension to Other Problems

The tools created during the course of this project have
straightforward applications to a number of other photogra-
phy problems. Instead of outputting a coherent stereo pair,
it would be trivial to output a wide field-of-view video by
including the non-overlapping portion of each video. By only
selecting the intersecting portion of the feeds, a high quality

denoised output is obtained. These single feed output options
are useful for high quality video conferencing, where rather
than buying a high quality video camera, the fusion of two
noisy, inexpensive cameras would produce an acceptable
result.

If we consider random noise in the cameras video stream
as an independent random variable, we could combine the
two streams to lower the total variance. Additionally, if the
cameras are compressing their output, and the compression
artifacts occur independently, we can use differences to elim-
inate those as well.

2. Solution Strategy
There are four phases to our solution.

1. Calibration: We rectify the images so that the rows of
the image have the same y-value in the scene.

2. Matching: We determine a dense matching for each
column of the left (source) image to the corresponding
column in the right (destination) image.

3. Correction: We learn a function from source image
color to destination image color.

4. Unify: We output the stereo pair, with the destination
image corrected.

3. Calibration: Rectify the Input Pair
Sparse point correspondences are calculated using scikit-

image’s implementation of SIFT. Points are filtered using
RANSAC, and the fundamental matrix was calculated, also
with scikit-image. OpenCV’s stereoRectifyUncalibrated
is used to derive homography transformations to rectify the
source image pair.

This approach is not successful. Even in ideal con-
ditions with static pre-rectified images, the rectification
is unstable. A variety of implementations of SIFT and
the fundamental matrix solver were tested. The authors
presently believe the issue to be due to a known bug
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in stereoRectifyUncalibrated, as example code from
OpenCV, and elsewhere, suffered from the same instability.
A long term solution would probably involve using fiducial
markers to gather higher quality point correspondences. An
undistortion step is also warranted.

4. Corruption: Mock the Data
An approach was needed to address the lack of rectified

stereo video from actual webcams. As a temporary measure,
stereoscopic video was gathered from YouTube [5], and
artificially corrupted to reproduce the problem setting.

The first step in the data corruption process is the color
transformation. Users are given the ability to tweak the color
using sliders for lightness, tint, and color temperature. These
labels are given to the process of scaling and offsetting the
input pixel colors after they have been transformed into the
L∗a∗b∗ color space.

The next step is the addition of Gaussian noise. Each input
pixel is given a offset based off of a continuously changing
Gaussian noise map. The standard deviation of the noise
profile is user configurable. This is intended to simulate
sensor noise.

As a final step, the input images are compressed using
JPEG, and immediately uncompressed. After altering the
input colors and applying the Gaussian noise map, we hope
to develop unique compression artifacts, as would be seen
in the output of low quality webcams. In an alternative im-
plementation, the compression parameters could be made
user-configurable.

5. Matching: Scanline Stereo
The scanline stereo algorithm is uniquely suited toward

finding dense pixel matches suitable for this problem.
Since our input is two rectified images, the rows are views

of the same height in the scene. Thus, when trying to match
the images, we can focus on a single row when we are trying
to compute the matching. We want to find the “best” map
from source column to destination column along that row.
We defined optimality by computing a divergence matrix (see
Figure 1 and Figure 2) for all the columns in the source to
all the columns in the destination, and finding the minimum
cost path along that matrix.

More concretely, let’s say we’re calculating the corre-
spondence of row r. We will define the divergence between
columns cs and cd as the mean squared error between the
patches surrounding the pixel at r, cs in the source image
and the pixel at r, cd in the destination image (this is clearly
visualized in Figure 1). We will refer to the MSE between
two pixels to be the pixel divergence, and the MSE between
two patches (the sum of pixel divergences) to be the patch
divergence. This gives us a measure of patch divergence
centered at the two pixels. If we arrange those divergences

Figure 1. A visualization of pixel and patch divergence centered at
u and v. Note: they are in the same row, but in different columns.
In this paper we work with each row independently.

Figure 2. Fixing a row, the goal of the algorithm is to find a corre-
spondence between every column in a scanline in the source image
with a column in the corresponding scanline in the destination im-
age. We do this by tracing a minimum cost sequence, starting from
the last column in the source and destination indices.

Figure 3. We want to find the cost of c∗. This calculation is inde-
pendent for each row, so let r be the row. We define p to be the
patch divergence at r, s, d, and occl to be the occlusion penalty.
Then c∗ = min(c1 + p, c2 + occl, c3 + occl).

into a matrix (like in Figure 2), a path through that matrix is
a correspondence between source and destination columns.

We calculate the cost of a path through this matrix of
patch MSEs recursively as either an occlusion penalty along
the source or occlusion penalty along destination columns
or the patch divergence between the two pixels. See Figure
3 for more details.

We want to find the min cost path, which will correspond
to the optimal correspondence between source and desti-



nation columns. We can do that using a technique called
“dynamic programming”. This involves storing intermediate
results in a table to calculate the minimum path. This allows
us to compute the min cost path.

So, to complete Stage 2, (1) we compute the divergence
matrix for each row, (2) we solve for the min path for each
row, (3) we output that paths’ column correspondences.

5.1. Scanline Stereo Stages

5.1.1 Pixel Divergence

The pixel divergence, pixel[r, s, d], is a measure of the dif-
ference between the pixel in the source image at r, s, and
the pixel in the destination image at r, d (as seen in the
left subfigure of Figure 1). This project uses the squared
difference of the luminance values. Other implementations
may choose an alternative to squaring that’s less sensitive to
outliers. They may also choose the negative product of the
pixel intensities, potentially inspired by convolution. This is
straightforwardly implemented as triply-nested for loops.

5.1.2 Patch Divergence

The patch divergence, patch[r, s, d], is a measure of the dif-
ference between the patch of images surrounding r, s in the
source image, and r, d in the destination image (as seen in
the right subfigure of Figure 1). This quantity is a sum of
the pixel similarities of the pixels in the region r−P, s−P ,
to r + P, s+ P . The parameter P is configured by the user
as needed. This may be implemented by triply nested for
loops, over r, s, d. The neighboring pixels that make up the
patch may then be iterated over, and a final sum of the patch
divergence is totalled and stored.

5.1.3 Costs

The costs tensor, cost[r, s, d] represents the quality of the
match between the pixels r, s and r, d. This divergence mea-
sure includes the disparities of the pixels with lesser column
indexes, in the same scanline, in the best match. This is re-
cursively implemented, as shown in Figure 3. The terms of
the minimum represent the correspondence case, the source
occlusion case, and the destination occlusion case. Note that
the cost is only a function of the cost of the pixels in the same
scanline, which gives the scanline stereo algorithm its name.
This stage may be implemented using dynamic programming
[1]. The cost computation for pixels with r + s = k only
depend on the pixels with r′+s′ = k−1, meaning that each
diagonal can be successively computed once the previous
diagonal has been computed.

5.1.4 Traceback

The traceback stage is responsible for computing a correspon-
dence map, and a valid pixels map. The correspondence map,
correspondence[r, s], represents the optimal column that was
found in the cost computation. The valid map, valid[r, s]
represents whether the path in costs was achieved by a cor-
respondence; whether the first argument was selected as the
minimum. This can be computed by tracing a path back
from the cost matrix, with max indices, to the origin position.
Each step in the minimum should be selected by visiting the
pixel above, to the left, and diagonally up, at each index.

5.1.5 Fast Patch Similarity

Consider computing the patch divergence between a pair of
patches in one image; and computing the divergence between
a similar pair, one row down. These patches are identical,
excepting the the bottom row in the first pair, and the top
row in the second pair. Also consider a pair of patches, each
shifted over by a column. These patches are also very similar
to the patches in the first pair. Our implementation is able to
intelligently avoid this repeated work [1] [6].

We take inspiration from the differential prefix sum tech-
nique for computing the sum of a subsequence of an array.
We re-write the naive nested summation as a constant num-
ber of lookups in a prefix sum tensor, prefix[r, s, d]. This
allows us to effectively save work across rows and columns.
Let pixel[r, s, d], abbreviated p, be a measure of the diver-
gence of the pixels at r, s in the source image, and r, d in the
destination image.
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A straightforward implementation of∑r+P
r′=r

∑s+P
r′=r pixel[r′, s′, s′ + d − s] requires a num-

ber of operations proportional to the square of the patch size,



Figure 4. The first image shows what a pair of image patches looks
like in the pixel[r, s, d] tensor. The second two images describe the
prefix sum procedure: the prefix sum is first computed along the
rows, then diagonally along the columns.

while the new expression involves a constant number of
lookups, sums, and differences.

This however, relies on the prefix being computed in its
entirety. These entries can be computed using a cumulative
sum technique. Each entry can be re-written as a sum of
previously computed entries: prefix[r, s, d] = patch[r, s, d]+
prefix[r−1, s, d]+prefix[r, s−1, d−1]. Using this recursive
dependency, we can avoid computing the sum explicitly for
every r, s, d, saving work. Instead, we implement this using
two prefix sums: one over the rows, and one diagonally,
over the columns. A complete analysis of the number of
floating point operations and memory usage required for this
approach is included in a later section.

Each stage of the scanline stereo algorithm is presented
below. Pseudocode is included for the purposes of this anal-
ysis. Integer operations have been elided, edge cases are not
considered, and only the innermost statements of each stage
are shown. Let R, S, D, and P be the number of rows in the
images, number of columns in the source image, number of
columns in the destination image, and the number of pixels
in the patch, respectively.

The pseudocode and arithmetic intensity computations
are independent of the implementation, which is why this
analysis is included before the details are discussed.

5.1.6 Pixel Divergence

double distance = src[r, s] - dst[r, d];
pixel_divergence[r, s, d] = distance * distance;

This sample is run once for every row, column in the source
image, and column in the destination image. We perform
two loads, one subtraction, one product, and one store. How-
ever, the src and dst arrays are of size RS + RD, times
8 bytes. With optimal caching, they could all be read into
memory exactly once. With the loads and stores amortized,
the arithmetic intensity becomes AI= 2RSD

RS+RD+RSD
flops
8 bytes

The total number of floating point operations is 2RSD.
The total memory traffic is RS+RD+RSD, times 8 bytes.

5.1.7 Prefix Sum, Along the Rows

for (long r = 1; r < rows; r++) {
array[r, s, d] += array[r - 1, s, d];

}

This sample is run once for every column in the source image,
and column in the destination image. We load a value from
the array, perform an add with the accumulated total, and
store the result back to the array. The arithmetic intensity is
AI = 1

2
flops

8 bytes = 1
16

flops
byte . The total number of floating point

operations is RSD. The total memory traffic is 2RSD ×
8 bytes.

5.1.8 Prefix Sum, Diagonally Along the Columns

while (s < cols_src && d < cols_dst) {
array[r, s, d] += array[r, s - 1, d - 1];
s++; d++;

}

This sample is run once for every row, and column in the
source image. We load a value from the array, perform an
add with the accumulated total, and store the result back to
the array. The arithmetic intensity is AI = 1

2
flops

8 bytes = 1
16

flops
byte .

The total number of floating point operations is RSD. The
total memory traffic is 2RSD × 8 bytes.

5.1.9 Naive Patch Divergence

for (long rn = r - p; rn <= r + p; rn++) {
for (long sn = s - p; sn <= s + p; sn++) {

long dn = sn + d - s;
sum += pixel_divergence[rn, sn, dn];

}
}
patch_similarity[r, s, d] = sum / count;

This sample is run once for every row, column in the source
image, and column in the destination image. We assume opti-
mal caching, so each float from the pixel_divergence
array is only loaded once, even though we use it in multiple it-
erations. Thus, in total we load and store RSD 8-byte values.
We do RSD(2P +1)2 additions and one division. Note that
the count is a constant equal to (2P + 1)2 in non edge cases.
The arithmetic intensity is AI = RSD((2P+1)2+1)

2RSD
flops

8 bytes =
(2P+1)2+1

16
flops
byte . The total number of floating point opera-

tions is RSD((2P + 1)2 + 1). The total memory traffic is
2RSD × 8 bytes.

5.1.10 Fast Patch Divergence

double sum = pixel_divergence[rp, sp, dp]
+ pixel_divergence[rm, sm, dm]
- pixel_divergence[rp, sm, dm]
- pixel_divergence[rm, sp, dp];

patch_divergence[r, s, d] = sum / count;



This sample is run once for every row, column in the source
image, and column in the destination image. Using the same
logic from the previous step, we load 1 value (amortized),
perform 3 adds, a division, and store the result back. Note
that the count is a constant equal to (2P + 1)2 in non edge
cases. The arithmetic intensity is AI = 4

2
flops

8 bytes = 1
4

flops
byte .

The total number of floating point operations is 4RSD. The
total memory traffic is 2RSD × 8 bytes.

5.1.11 Cost Computation

double correspond = cost[r, s - 1, d - 1] +
patch_divergence[r, s, d];

double occlusion_src = cost[r, s - 1, d] +
occlusion_cost;

double occlusion_dst = cost[r, s, d - 1] +
occlusion_cost;

cost[r, s, d] = fmin(correspond, fmin(
occlusion_src, occlusion_dst));

traceback[r,s,d] = fargmin(correspond,
occlusion_src, occlusion_dst);

We have two helper functions: fmin which calculates the min
of two floats, and fargmin which return 0 1 or 2 depending
on which float is the smallest. This sample is run once for
every row, column in the source image, and column in the
destination image. We load 2 8-byte values (amortized load
from cost, and one load from patch divergence), perform 3
adds, two minimums (we optimally reuse the results of the
fmin operation in the fargmin), and store the result back, and
the direction we used (1-byte value). The arithmetic intensity
is AI = 5RSD

3RSD×8+RSD×1
flops
byte = 1

5
flops
byte . The total number of

floating point operations is 5RSD. The total memory traffic
is 25RSD bytes.

5.1.12 Traceback

while (s != 0 && d != 0) {
long argmin = traceback[r, s, d];
s -= {1, 1, 0}[argmin];
d -= {1, 0, 1}[argmin];
if (argmin == 0) {

correspondence[r, s] = d;
valid[r, s] = 1;

}
}

This sample is run once for every row. We load one value,
two stores, and no perform no floating point operations. The
arithmetic intensity is therefore zero. The number of itera-
tions is is bounded by the sum of the number of columns
in the source and the destination images. The total memory
traffic is 9RS +R(S +D) bytes.

5.2. Performance Analysis

A CPU implementation of the scanline stereo algorithm,
with fast patch similarity, is provided as part of this project.
Support for multi-threading was added using OpenMP.

runtime (milliseconds)
pixel similarity

sum rows
sum cols src
sum cols dst

patch similarity
costs

traceback
time to solution, cpu implementation

image size: 139 rows
image size: 278 rows
image size: 416 rows
image size: 555 rows
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Figure 5. Time to solution for the CPU and GPU implementations,
naive patch similarity kernel not included. The Bowling1 image was
selected, with a patch_size=12,occlusion_cost=10**-3. A
variety of image sizes are included, but the rows are labelled. Each
sample has identical aspect ratio.

A CUDA implementation of the scanline stereo algo-
rithm is also provided. Computation is parallelized across
the rows, source columns, and destination columns, as appli-
cable. The cost computation features parallel computation
across column diagonals. Significant effort was made to
reduce branching operations and to re-use memory.

5.2.1 Time to Solution

In order to deliver a real-time product, the time to solution
must be below a threshold. This is the amount of time re-
quired to create a dense disparity map, given an input pair of
stereo images. Only the fast GPU and CPU implementations
are considered for this analysis, as the naive implementa-
tions are intractable for real-time performance. The runtime
of each stage was plotted for a variety of image sizes 5.
Assuming a fixed aspect ratio, there is a roughly cubic rela-
tionship between the image height, and the runtime for each
of the stages (except traceback). The GPU implementation
is much quicker across all of the stages. To collect this data,
the median of 20 trials was recorded at each image size.

5.2.2 Nsight Systems Profile

In order to analyze the performance of the GPU implemen-
tation, screenshots have been provided of the Nsight Sys-
tems profiler, 6, 7. These screenshots show several trials,
scheduled back-to-back. The runtime of each stage and the
relative runtime of the kernels is shown visibly. The profile
also shows the memory operations.

From the profiler screenshots, it can be seen that copying
data between the host and device represents an insignificant
amount of the time-to-solution. The amount of data being
processed by the kernels is on the order RSD bytes, while
the data being transferred is on the order of RS +RD bytes.

From the screenshots, you can also see the relationship
between the patch size and the runtime of the algorithm. As
the patch size grows, the runtime of the fast kernel does



Figure 6. Fast solution Nsight profile. Screenshots for patch sizes 1,
3, 9, and 30 are shown.

not change. With a large patch size, the naive kernel’s patch
similarity finder dominates the runtime of the entire solution.
The runtime also grows quadratically with the size of the
patches.

5.2.3 Roofline and FLOP Rate

Experiments were conducted using on a Quadro RTX 6000
(GPU implementation), and a Intel Core i7-1165G7 (CPU
implementation), so roofline analysis was conducted for
these systems 8. We choose to conduct a roofline analy-
sis for a patch_size=3, on a 370 pixels by 417 pixel stereo
pair.

Experiments were conducted with a stereo pair of 370
by 417 images: the third size Bowling1 [7] image. Timings
were gathered by taking the median across 20 trials, and
the timings were plotted against the arithmetic intensity of
each stage. The traceback phase could not be included in the
figures, since it has zero arithmetic intensity.

The naive patch similarity presents a significant outiler.
In this phase, (2P + 1)2 iterations of a nested for loop are
conducted, and there is significant overlap in the memory
usage between iterations. With an optimal iteration order and
a large cache, theoretically each value has to be read once
from the pixel similarity tensor. In this way, it has a very

Figure 7. Naive solution Nsight profile. Screenshots for patch sizes
1, 3, 9, and 30 are shown.

large arithmetic intensity.
There is a significant limitation in our analysis. Our count

of the number of floating point operations does not consider
edge cases. For large images, there are few patches on the
edge of the image, so the effect should be limited. However,
with large patch sizes, it can be the case that we over-count
floating point operations. This led to a bug where the naive
patch similarity was above the roofline in an earlier iteration
of the chart. A more accurate estimate of the floating point
operation count would lead to points being slightly below
their current positions.

None of our stages achieve the maximum flop rate al-
lowed by the roofline.

This may be partially due to optimistic specifications for
our memory bandwidth and floating point operation rate.
Other assumptions about are hardware are also infeasible, in-
cluding the optimal caching assumption, which is impossible
on real hardware.

The overall runtime of each stage is dependent on more
than just floating point operations. Some stages, especially
the fast patch similarity stage, rely significantly on integer
operations. This decreases the overall time to solution.

The cost calculation, and prefix sum stages have signif-
icant data dependencies. Before some entries can be com-
puted, we rely on the results from previous entries. For ex-
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Figure 8. Roofline chart for the CPU and GPU implementations.

ample, before a diagonal in costs is computed, we have to
wait until all of the threads complete the previous row. This
effects the performance in two ways: we may not be able to
use the full hardware parallelism, and the synchronization
instructions have additional overhead.

Branching has an impact on our performance. In the GPU
implementation, since our images may not have dimensions
that are multiples of the thread block size, conditionals are
required to avoid out-of-bounds writes. There are condition-
als deeply embedded in the logic of the cost stage especially.
On the GPU, conditionals can cause warp divergence, where
operations in a warp are serialized. This can prevent the full
utilization of hardware capabilities. The CPU implementa-
tion has many fewer of these kind of conditionals.

We are memory bound, with the exception of naive patch
similarity. The naive patch similarity becomes arbitrarily
compute bound as the patch size grows. More calculations
are needed on the same amount of data.

Figure 9. Comparison of StereoSGBM with the results from scan-
line stereo. The first image is the left image in the stereo pair. The
next image is result from OpenCV. The last image is our result.

5.3. Comparison with Related Work

For the purposes of comparison, we ran our test image,
370 by 417 pixels through OpenCV’s StereoSGBM matcher
[3]. This algorithm is fundamentally different than the one
we have chosen to implement; however it is a frequently used
real-time disparity map estimator. We achieved compara-
ble results with numDisparities=100, blockSize=11. The
time-to-solution was 26.04 milliseconds. Our solution, run-
ning on the GPU, with patch_size=30, occlusion_cost

=0.001, completes in 84.01 milliseconds. The CPU solu-
tion, parallelized with OpenMP, completes in 788.1 millisec-
onds. Results with more disparity resolution and fewer incon-
gruities take longer with StereoSGBM. Tweaking parameters
of our algorithm has a negligible impact on performance, as
they only impact the traceback stage.

The quality of the results are significantly different be-
tween the two implementations. For example, our algorithm
is completely unable to find the disparity for the pixels on
the table in the scene. The table has little texture, so our
algorithm is unable to discriminate between these patches.
StereoSGBM does not suffer from this problem as it pro-
duces results that are coherent across rows. Our algorithm
produces results that are acceptable for the bowling ball and
bowling pin, as patches on these surfaces are textured enough
to provide meaningful inter-patch discrimination.

5.4. Discussion of Optimizations

5.4.1 Removing the Patch Divergence Intermediate

It was investigated whether removing the patch divergence
intermediate from the algorithm would improve performance.
Instead of having a separate patch divergence stage, the patch
divergence code could instead be inlined into the cost stage
kernel. This was attempted, and there was a significant perfor-
mance regression. Both strategies have identical flop counts,
so it may be initially surprising that removing a large inter-



mediate would actually reduce performance. We consider
the most likely explanation that the memory access pattern
of on pixel[r, s, d] in the cost stage is less predictable than
accessing it during a separate patch similarity stage. As we
traverse the diagonals during the cost stage, the relevant en-
tries in the pixel[r, s, d] tensor appear almost random, being
in arbitrary rows and columns.

5.4.2 Removal of the Cost Intermediate

In order to produce the output valid and correspondence
maps, we do not need an explicit cost intermediate. Instead,
we can store integers representing the path back to the output.
We call this tensor traceback. Instead of storing the full dou-
ble precision values, only a few bits are needed to represent
the next step in the path. These saves memory.

However, in order to compute the an entry of the trace-
back tensor, the costs above, to the left, and diagonally up
from the entry need to be stored as seen in Figure 3. Our
implementation stores three diagonals of the cost tensor in
shared memory, which satisfies the memory dependency,
while avoiding unnecessary allocations and slow reads and
writes to main memory. This change improved our time to
solution significantly.

5.4.3 Single Precision Floating Point Numbers

Calculations on single precision floating point numbers can
be much quicker than calculations on double precision float-
ing point numbers. In addition, single precision floating point
numbers require less memory to store, reducing the memory
traffic.

It is uncertain whether single precision floating point num-
bers are viable to use with the fast patch similarity algorithm.
They have very limited precision, at 23 bits, or roughly 7
digits. Our algorithm relies on summing across the rows and
columns of the source images, meaning that the maximum
value we need to store is on the order of several hundred thou-
sand. Precision is significantly limited when storing numbers
of this magnitude. In order to compute the patch similarity,
we intend to subtract values of the array. When we subtract
two numbers of this size, floating point cancellation causes
our estimations of the patch similarity to become highly in-
accurate. These issues compound as input image dimensions
become larger. With the much more precise double precision
floating point numbers, these issues are avoided.

5.4.4 Future

With more time, there are several strategies that we predict
would improve performance.

The implementation included in this project for prefix
sum is naive. We selected the simplest implementation in

order to ensure accuracy. As the project developed, we recog-
nized that the prefix sum stages represented a much smaller
fraction of the runtime than the cost stage, so optimization
effort was not directed towards prefix sum. We recognize
there are a variety of parallel prefix sum techniques. It is
ambiguous whether they would improve performance: our
parallelism is already saturated by the fact that we need to
compute several independent prefix sums. It is worth investi-
gation, however.

Another strategy worth investigation is to round the image
size up to be a multiple of the thread block size. By guaran-
teeing that each thread is processing a valid pixel, it would
be possible to remove several conditionals. This approach
uses memory however. Care must be taken to avoid making
these boundaries a part of the result.

Another strategy worth investigation is to change the
way we calculate the denominator of the patch similarity
(the pixel counts). For most of the patches, the count is
(2P + 1)2, so the count computation could be broken up
into different kernels, or computed incrementally, and this
would save some time. However, computing count did not
represent a large fraction of the overall time to solution, so
this was not investigated.

6. Correction: Color Mapping
The goal of the color mapping stage is to make the desti-

nation image look like the source image. Idealistically, the
mapped destination image and the original source image
could be delivered as the output of the entire pipeline. This
stage suffers from inherent issues, so it serves as a first-pass
output. It has the benefit of being complete however: every
pixel in the destination image is transformed.

The input to this stage are the two input images, and the
dense, high quality pixel correspondences from the scanline
stereo stage. The respective pixel values are extracted from
the correspondences. The pixel values are converted into
the L∗a∗b∗ color space. A linear mapping from each source
color channel to the corresponding destination channel is
derived. For this project, a linear mapping is assumed to be
acceptable.

The inverse of the model is applied to the destination
image. The result is a recolored destination image that is
visually similar to the source image.

6.1. Limitations

There are several issues with this approach. Highlights
and underexposed regions represent parts of the image where
the true color could not be derived. Very bright and very dark
pixels are manually filtered when creating the model, but
the model is naively applied to these highlights to generate
the output. The output is unrealistic in some regions for this
reason. A more careful approach might preserve highlights
and underexposed regions when generating the output.



Noise, including compression artifacts and sensor noise,
represent outliers for this approach. The intention is that
with enough pixel correspondences, the noise will cancel
out. A more robust approach would take more care when
developing the model, and use an approach like RANSAC.

The true mapping from the source colors to the destination
colors is, in general, not linear. An alternative implementa-
tion might generate a per-channel lookup table.

Despite the limitations, the problem setting assumes that
the source and destination feed have largely similar proper-
ties. This naive color mapping approach delivers a first-pass.

7. Unify: Make Enhanced Stereoscopic Video
Stream

The goal of the unification stage is to deliver a coherent
stereo video. The destination image is altered to look like the
source image. The inputs to this stage are the source image,
the input destination image, color mapped destination image,
and the dense pixel correspondences.

A spatially mapped image is generated by borrowing the
pixels from the source image according to the dense corre-
spondences. This image has features in the same location as
the corresponding features in the destination image, however
it is made from source image pixels. This means that the
color profile matches identically with the source image.

This image is missing pixels in the places where the
scanline stereo algorithm was unable to determine corre-
spondences. These holes are filled in with pixels from the
first-pass, color mapping stage.

The result is a transformed version of the destination
image that has the same color properties as the source image.
This destination image is output alongside the source image.

7.1. Limitations

A more sophisticated implementation would use an alter-
native scheme to compose the color mapped and spatially
mapped images. This would remove the seams that are some-
times visible in the output. It would also help smooth the
color transitions.

8. Application

In order to demonstrate the pipeline, an application was
written. This application takes a stereoscopic video as input,
and outputs an enhanced stereoscopic video.

The performance of the application, as run on the authors’
laptops, is very poor. With a rows=320 video, the application
runs at approximately 1 fps. The scanline stereo algorithm
represents the majority of the runtime for each frame. The
authors do not have access to a device with a GPU, so the
CPU implementation of the scanline stereo algorithm must
be run at this degraded speed.

Figure 10. First: dst features an extreme brightening, tint, and no
injected noise. Second: dst image features extreme noise injection.

A screenshot of the application 10 is included to highlight
the capabilities and limitations.

The top row represents the input images. The reader
should distinguish the left (src) and right (dst) images by
the fact that Brian’s head is positioned more to the left in
the src image. The right image, labelled dst, is artificially
brightened and tinted. This is to simulate each camera in-
dependently adjusting exposure and color balance. These
corruption parameters were chosen using the lighten and tint
sliders.

The next pair is the rectified images. Since the images
are already rectified, and our rectification code is flawed, no
transformation is performed.

Next is the color corrected image pair. Since the high-
lights are extreme in the dst image, the color correction
failed, and the red from the curtain was applied to the hair
and shirt. These unrealistically extreme settings were chosen
to demonstrate the integration image (discussed below).

The next row contains the mapped and the integrated
images. The mapped image is the spatially mapped image
that borrows pixels from src to reproduce dst. As you can see,
Brian’s head is positioned to the right, as in dst. However,
the color is natural, as in src. There is a notable gap in the
left of the image where no corresponding pixels in src could
be found. The mapped image can be altered by adjusting the
parmeters of the scanline stereo algorithm with the patch size
and occlusion cost sliders. The integrated image is formed by
composing the mapped image and the corrected dst image.
The left of Brian’s shirt has the artifacts from corrected dst.

A second screenshot is provided with an extreme level
of injected noise 10. An output dst image recovered with
acceptable quality.

Larger screenshots are provided in a supplemental page.
The resulting stereoscopic video streams are very high qual-
ity, despite the extreme corruption.

Corrupting both the src and the dst images has not been
attempted, but likely models the problem setting more accu-
rately.



9. Division of Effort
9.1. Jason

For the code, I helped design and write the CUDA kernels.
I helped design and write a prototype color and exposure
correction program.

For the report, I drafted the intro, and wrote many of the
diagrams. I checked the performance analysis sections, and
made some small general edits to the paper.

9.2. Ethan

Initially drafted the correction model with Jason.
I also helped design and write the GPU implementation.

I ported the GPU code to the CPU using OpenMP. I created
the gallery, and the performance graphics.

I wrote the bindings to call the C++ and CUDA code from
Python.

Did the initial flop count and arithmetic intensity calcula-
tions. Wrote much of the discussion sections.

After we finished the version of the report submitted
APMA 2822B, I did the remaining work. This includes writ-
ing the application, and the write up of the pipeline in the
report, and modifying the presentation slides for computa-
tional photography.

10. Gallery
We processed each of the images in the Middlebury 2006

dataset [7] with our scanline stereo implementation. Each
triplet includes the left image in the stereo pair view1.png,
the ground truth disparity map disp1.png, and our result.
These results were achieved with fixed parameters across all
of the images patch_size=7,occlusion_cost=10**-2.1.

[2] [4]
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