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Drowsy driving is a serious issue that leads to 328,000
car accidents and 6,400 fatalities and a societal cost of
1098 annually 1, 2). Advances in video recognition
models enable real-time drowsiness detection. While
there are open source models for general video-based
recognition, few open source models focus specifically
on drowsiness detection. We apply extensive data
augmentation and train our drowsiness detection model
on two different architectures (VideoSwin and
Conv2D+ID) which we fine-tuned for our task, achieving
moderate accuracy at detecting drowsiness.

MODEL ARCHITECTURE

Video Swin Vision Transformer Architecture

‘The Video Swin Transformer block replaces the standard
multihead self-attention (MSA) module with a 3D shifted
window-based multi-head self-attention module. This module is
followed by a classification feed-forward network.

: Conv2D + ConviD

Our alternative Conv2D+ID architecture is based on the
pretrained MobileNetV2, interspersed with temporal 1D
convolutions, culminating in temporal aggregation.
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PREPROCESSING and AUGMENTATION

The majority of the code in the project is dedicated to taking raw gy
videos from the UTA-RLDD dataset and creating training examples. “_
raw

This preprocessing and augmentation stage is needed because the

dataset includes videos were not taken in driving scenarios and their

large resolution presented a bottleneck during training. Augmentation
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participants, and environmental lighting conditions. We created a

variety of sophisticated augmentation procedures that feature —

transformation parameters fluidly evolving over time. We use = .\‘ add
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combinations.

Our preprocessing and augmentation steps include the below,

smoothly varying over time:

« Isolating the eyes of the subject to remove background detail and
reduce image size

« Adjusting the brightness by multiplying and adding to the pixel
values

« Varying the contrast, add smooth high and low frequency noise,

apply perspective transformations, and horizontally fip the input

videos.

Shifting perspective, which takes videos taken from a single, static

point and varies the apparent angle from which they were taken.

Resizing the data to fit the dimensions of our architectures.

™
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Broadcasting our grayscale images across RGB space to fit model
RESULTS

MobileNetV2: Conv2D + ConviD

Our best performance was achieved on our Conv2d + ConviD
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Fine Tuning Videoswin
The highest validation accuracy was 4151% after immense
ifficuty in fineuning the model Using a checkpoint of videoswin,  architecture. Models trained using a variety of augmentation
Custom classifer. After seeing carly and frequeni  parameters and learning  rates were evaluated aganst 2,000
overfitting and training instabilty, we employed arious strateges  Unaugmented 32 frame samples from the tes set.
including 5 learning rate scheduler starting from 1e-4 and decreasing
by exponentilly by 096, freezing and unireezing. diferent
combinations of exiting layers n VideoSwin, batch normaization,
and dropout ayers at 05, We cid manage to train above chance, but
training remained unstable. A the end, we used ai the above
strategles and unfroze the frst, seventh, and last ayers resulting in
the imag- -

Experiments were run on Oscar with learming rates of 16, 1e-7,
1e-8, full augmentation, no augmentation, and augmentation with
excllsively perspective shifts.

Test Accuracy vs. Epoch for MoblleNetV2 ConvZD + ConviD

Vanilla Conv2D + ConviD

Highest validation

accuracy achieved was + T 3 T >
148.129% with batch size of o

8 and 32 frames per With this architecture, we achieved a peak accuracy of 46.1% on the
epoch. A small subset of comprehensive test set. Without augmentation, test accuracy
the test data was used for plateaued or decreased. With a learning rate of 16 or greater

this evaluation. training was unstable.
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Link to the Write-up’s Google Doc (for images):

https://docs.google.com/document/d/14Yd4BN8G7mwARUIOHM7mwlE_-sxprvEqRwWUEEjwOqis

/edit?usp=sharing

Github:

You can access our repo here: https://github.com/EtomicBomb/deep-learning-final-project

DevPost:

https://devpost.com/software/deep-learning-final-project-zsci50
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DISCUSSION

One of the biggest bottlenecks of our project
was the computational demand of working with
video. Preprocessing the training videos to
extract the eyes took several days on Oscar.
Even after this and using google Colab pro, our
ability to train and fine tune the model was
limited by the amount of compute required.
Additional resources would allow us to deliver a
higher performing model.

Due to the computational demands of our
training data, we could just barely finetune the
Video Swin architecture and were also limited in
the number of epochs we could run. Additional
computational power would allow us to see if
higher numbers of epochs and making all the
layers in Video Swin trainable would improve
model performance.

The UTA-RLDD dataset also has significant
limitations: drowsiness levels are self-reported,
and there are only 48 publicly available
participants. This limits the amount of
information that our model could hope to learn.

FUTURE WORK

Finding a way to shrink the size of training data
through a CNN layer at the beginning or sparser
frame-sampling to make training the model
more computationally efficient would  allow
making the model to train for more epochs and
for more of the weights to be made trainable.
Additionally, gaythering more diverse data
samples would increase the model’s robustness
and increase accuracy for under-represented
groups in the data.
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Drowsy driving is a serious issue that leads to 328,000 car accidents and 6,400 fatalities
annually according to the AAA Foundation for Traffic Safety. Additionally, the NHTSA estimates
that drowsy driving related crashes cost society $109 billion annually, not including property
damage. Recent advances in the accuracy and efficiency of video recognition models enable
real-time drowsiness detection to be technologically possible. However, while there are open
source models for general video-based recognition, few open source models exist that focus
specifically on drowsiness detection. Additionally, a major bottleneck in the development of open
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source drowsiness detection models is lack of data. We apply extensive data augmentation
techniques that vary the brightness, contrast, perspective, and reflection of data samples in a
smooth way, thereby increasing the robustness and amount of data our model can train on. With
this augmented data, we trained our drowsiness detection model on two architectures: a
state-of-the-art video action recognition model (VideoSwin) with a classifier on top and the
Conv2D+1 architecture, achieving 46% accuracy.

Methodology

In our literature review, we couldn’t find any video-based drowsiness detection models that used
publicly available datasets for training. The only drowsiness detection models that were
available used images, but we wanted to leverage the temporal relationship between image
frames in video-based models as opposed to drowsiness detection from images alone.

Because of this, we instead took inspiration from ‘Driver Drowsiness Detection in Facial Images’
which was domain specific but used a private dataset and image based approach. We used the
UTA-RLDD dataset, the largest publicly available dataset which is also used in ‘Vision
Transformers and YoloV5 based Driver Drowsiness Detection Framework’. We considered
implementing a model similar in architecture to the Vision Transformers and YoloV5 paper, but
instead decided to use the Video Swin Transformer architecture which was more
computationally efficient, making it better suited for real-time drowsiness detection scenarios.

The Video Swin Transformer model achieves state of the art accuracy on Kinetics-400 and
Kinetics-600 datasets for action recognition tasks, but was not specified to our task or our
dataset. Additionally, while the dataset we used is the largest publicly available drowsiness
dataset, it is still very limited, containing only 48 participants with limited gender and ethnic
diversity. Because of this, one of the core contributions of our project was doing significant data
augmentation and pre-processing to make our data more robust and compatible with the Video
Swin architecture. From there, we fine-tuned the pre-trained model and added a classifier to
specialize the architecture for our task for our experiments with the Video Swin architecture.

For the Conv2D+1 architecture, we ran a series of experiments with various epochs and varying
amounts of pre-trained v.s. fine-tuned layers. To evaluate the impact of the data augmentation
on model performance, we also tested with fully augmented data, partially augmented data, and
non-augmented data for each of the architectures.

Data Augmentation & Pre-Processing

One of the most significant efforts in this project centered around preprocessing and
augmentation that took several days of additional computation time and used multiple third-party
models. The raw images from the UTA-RLDD dataset could not be fed directly into a model for
training. There was a need for significant preprocessing and data augmentation. In this process,
we developed several sophisticated tools to turn smartphone and webcam video into robust
training examples.

The need for preprocessing and augmentation came from a variety of issues with the training
data. The videos in the dataset are videos that were recorded by amateurs from smartphones
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and webcams. Very few of the videos were taken in driving scenarios. These smartphone
videos did not have isolated subjects, which would present opportunities for a model to learn
false relationships between drowsiness and irrelevant details in the background.
There was a lack of diversity among participants in the dataset, and the variety of angles and
lighting associated with a real-world driving scenario. This is due to there only being 48
participants included in the publicly available portion of the UTA-RLDD dataset.
The first stage of data preprocessing involved isolating the eyes of the subjects. This removed
background noise and other details, allowing a model to focus on the variables that we believe
can be examined to determine whether a subject is drowsy. To perform this isolation, we first
recorded the eye positions in the source videos using
dlib.cnn_face_detection_model_v1, with the pretrained model
mmod_human_face_detector. The face positions were extracted using
dlib.shape_predictor, with the pretrained model
shape_predictor_5_face_landmarks. Applying these models to the source videos took
several days using our available resources on the batch partition of Brown University’s OSCAR
supercomputer cluster. Additional effort was needed to create the transformations for the
prerecorded eye positions using scikit-image. Next, 224x112, greyscale, eye-centered videos
were rendered using PyAV. Rendering these videos took several hours on the same partition.
Because of the lack of diversity described above, an augmentation pipeline was necessary.
Several custom video augmentation layers were developed as part of this assignment. We
decided to develop an augmentation procedure that generates
videos that more accurately match the kind of videos that are

“"tf y taken during driving. For example, as a driver passes under an
.L,',_ raw overpass, a video may transition from bright to dark. As a driver
- shifts their head, the perspective of the video may change. These

where the parameters of the augmentation change over the
course of a video.

add Specifically, we vary the contrast, multiply and add to the pixel
values, add smooth high and low frequency noise, apply
perspective transformations, and horizontally flip the input videos.

multiply These transformations are parameterized by constants that vary
over time. For example, when we modify the contrast, there is a
constant that controls the strength of the change. Where

contrast applicable, these parameters are sampled from a random normal

distribution that varies over time, and smoothed with a sliding

exponential mean. The high and low frequency noise is created

from a procedure that applies a fast fourier transform to random

data to generate a noise pattern that smoothly varies over space

and time. This can simulate changes created by shadows and

video compression artifacts.

The shifting perspective is one of the most interesting

combination  augmentations because it takes videos taken from a single, static
point and varied the perspective angle from which they were

- effects necessitate a more sophisticated augmentation procedure
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taken. This made the data more robust because it did a better job of accounting for jolts while
driving, various driver heights, and various camera-to-driver angles. Four perspective shift
matrices were found that form a basis for our transformation, and the actual perspective
transform is found by applying a varying linear combination of these matrices to every frame.
Our procedure is especially interesting because we only generate perspective transformations
that are in-bounds, without any background fill needed.

Additional preprocessing was needed to make our data conform to the model’s expected format.
We cropped, resized, and padded the videos; and broadcasted the gray-scale pixel values
across 3 RGB color channels.

Results with VideoSwin Model

Our highest accuracy with the VideoSwin architecture was 41.51%. We consider this a fair result
given the difficulties our group encountered in the training process. Despite VideoSwin being
well-documented and featuring useful model checkpoints to work from, it proved very difficult to
fine-tune.

Despite our efforts in preparing an elaborate data augmentation pipeline, fine-tuning VideoSwin
introduced a major computational bottleneck where we were forced to use a batch size of 2
since any increase in batch size caused memory issues, even with the A100 ‘s 40GB of VRAM
on Google Colab Pro. We tried many strategies to get the model to learn, making full use of
what we learned in class and more.

For our experiments using Video Swin, we used the following architecture:
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Video Swin Architecture Custom Classifier

Many strategies were used to get the VideoSwin model to be fine-tuned while our custom
classifier trained on top. First, we experimented with unfreezing specific layers in the
architecture that would make the most impact. TFPatchEMmbed3D, the first layer, manages
how embeddings are first formed. When unfrozen, we began getting some improvement in
training above chance. Next, as expected, the final two layers like TFBasicLayer3 and
TFBasicLayer4 - the stage 3 and 4 blocks above - when unfrozen, also helped the model to
train.

Second, we tuned the learning rate being used with AdamW, the optimizer suggested by the
paper. At first, we saw early and frequent overfitting, seen as dramatic oscillations in test
accuracy. After experimenting with training rates like 1e-5, 1e-6, and 2e-5, we saw the overfitting



occur much later in the training process; in effect, we were really just pushing off inevitable
overfitting to later epochs and slowing our training. So, we added a learning rate scheduler that
employed exponential decay where we exponentially decreased the learning rate based on the
number of steps. Starting from 1e-4, we updated every 100 steps and multiplied it by 0.96. After
adding this, we saw much less oscillation in our loss. To help us avoid wasting paid compute
from colab, we also do early stopping where we stop if, after 5 epochs, no decrease in validation
loss is seen.

Third, we tried smaller changes to our custom classifier that could potentially help improve our
model. We added batch normalization to normalize the activations of our dense layer. We
thought it might help support the depth of our network and reduce how much the weights we
started with - which were for another task - may impact our task. Additionally, we added dropout
layers with 0.5 as their value since the model was prone to overfitting early on.

In the end, we managed to achieve a high accuracy of about 44% combining all of these
together. However, this was very early in the training process of a particular run, so we do not
consider this as a valid result. On a later run that was saved to our Github, we managed to get
an accuracy of 41.51%. Here is a visualization of the training and validation accuracies.

Model Accuracy over Epochs
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In the end, the chief issues were a lack of compute and a mismatch between the VideoSwin’s
task and ours. Our rationale was to use a model pre-trained on general video data and fine-tune
it to our task. However, VideoSwin turned out to be hard to fine-tune without significant compute
as video data with batch sizes higher than 2 would exhaust even the larger 40GB VRAM
budgets with higher end Colab Pro GPUs. Our data, despite being reshaped and prepared for
VideoSwin, did not seem to train properly, despite our best efforts.

We investigated other models after our difficulties with VideoSwin, which is described below.

Results of Experiments with MobileNetV2-based Conv2D+Conv1D Model:



Our best performance was achieved on our Conv2D + Conv1D architecture. This architecture
was created in order to make use of existing individual-image models. MobileNetV2 [7] is a fast,
high-performing low parameter convolutional neural network specialized for classifying
ImageNet images. We believe that its early convolutional filters can be used in developing a
video drowsiness classifier. MobileNetV2 has several downsizing blocks in which we can
intersperse Conv1D blocks to synthesize information over time. The convolutional model is
applied to each frame of the clip, and the results are aggregated across time using a final 3D
convolution layer. After making these modifications, experiments were run on Oscar with
learning rates of 1e-6, 1e-7, 1e-8, full augmentation, no augmentation, and augmentation with
exclusively perspective shifts.

Models trained using a variety of augmentation parameters and learning rates were evaluated

against 2,000 unaugmented 32-frame samples from the test set. None of the participants in the
test set were shown to the model during the training process.

Test Accuracy vs. Epoch for MobileNetV2 Conv2D + Conv1D
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Broadly, results ranged from low 20% accuracy to high 40% accuracy. The high accuracy results
are known to be statistically significant due to the large size of the test set. Our model is able to
successfully predict the drowsiness level of participants, above chance (33%).

The best result, 48.6%, was achieved with every augmentation setting enabled, and a learning
rate of 1e-7. The small learning rate was needed due to the fact that we were largely fine tuning
an existing architecture, and the fact that our training set is highly augmented. Training was
unstable with a larger learning rate. Without augmentation, performance on the test set
decreased. This is likely due to overfitting. In the other configurations, performance on the test
set stabilized. We trained the 1e-7; full augmentation run for an additional 20 epochs because of
its early outstanding performance, which is shown in the graph.



Overall, we can conclude that the augmentation was highly effective in combating the low
diversity of our data. We are able to predict the self-reported drowsiness label with a moderate
level of success.

Results of Experiments with Vanilla 2D+1D Conv Model:

Vanilla 2D+1’s highest validation accuracy achieved was 48.12% with batch size of 8 and 32
frames per epoch.

Model Accuracy over Epochs
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Discussion

One of the biggest bottlenecks of our project was the computational demand of working with
video data. Even after cropping the videos to only include the eyes and nose region of the face,
our ability to train and fine tune the model was limited by the amount of compute needed.

Challenges

Computational Bottleneck

Due to the computational demands of our training data, we could only finetune the last few
layers of the Video Swin architecture and were also limited in the number of epochs we could
run. To gain access to more compute, we used google colab pro, but even with a pro account
we ran out of GPUs and often ran out of available RAM. We also utilized OSCAR to try address
this issue but found that we had the best performance with google colab pro. Additional
computational power would allow us to see if higher numbers of epochs and more making all
the layers in Video Swin trainable would improve model performance. For the Conv2D+1
architecture, computational bottleneck was also an issue which led to slow training and limited
learning. The nature of the data we used (real world, video-based) was naturally massive in size
and even with the measures we took to crop and downsample the data were not enough to
overcome with the limited computing resources we have. As mentioned in the results section,
our max batch size of 2 caused high variance updates during training that seemed to seriously
affect our ability to fine-tune VideoSwin.

Lack of Diversity Among Training Data

Although we used the largest publicly available dataset for drowsiness detection, our dataset
had several limitations. These were: lack of ethnic and gender diversity (e.g. 9 women out of 48
participants and primarily white and Indo-Aryan participants). Additional limitations of our
dataset were that drowsiness levels were self-reported, and thus can vary across participants,
and that they were taken selfie-style and not in real-world driving conditions. We did everything
we could to overcome these challenges by going through significant data augmentation to make
samples more like real-world conditions. These augmentations increased the difficulty of the
training task, since there was greater variance among data conditions. We saw this as a
positive, important step because we wanted to tackle a real-world problem, which meant that we
wanted to use data that was as close to real-world conditions as possible. However, this
became a challenge while training the model due to the limited computational resources we
had.

Future Work

Future work includes finding a way to shrink the size of training data (through a CNN layer at the
beginning or sparser frame-sampling) to make training the model more computationally efficient
and solve the computational bottleneck we faced. Gathering more diverse data samples to



increase the gender and racial diversity of training data would also be important from a model
performance and ethical perspective.

Reflection

How do we feel about how our project came out?

Although we wish we could have achieved a higher accuracy, we are proud of the data
augmentation techniques and the extent to which we addressed the computational challenges
we faced. Our accuracy ended up being lower than our base goal, but we underestimated the
magnitude of compute we would need which hindered our ability to train and improve our model.

Did our model work out the way we expected?

Our model did not work out the way we expected it to, but we learned a lot in the process and
made creative, informed efforts to solve the different challenges that arose. We went into the
project knowing that video data would be large to work with, and made initial decisions to
address that by using architectures that were known to be more efficient. However, we quickly
learned that even with extensive pre-processing and choice of architecture used, computation
demands remained a massive bottleneck to model training and learning.

How did our approach change over time/what would we have done if we could do it over?
Professor Singh has mentioned throughout the semester, many machine learning decisions
happen empirically, and we found this true with our project as well. While our conceptual
understanding of the task guided our early decisions (like choosing a video-based architecture,
cropping images to reduce resolution and decrease computation demand, choosing a relatively
more efficient video-based architecture), as we trained the model we quickly realized that those
efforts alone would not be enough to overcome the compute necessary to get the model to
learn. When this happened, we tried a variety of changes to get better results. We utilized
different levels of data augmentation in training, different batch sizes, a new architecture
implemented from scratch, varying epochs and weight initializations for models we fine-tuned,
and training our model on Oscar and Google Colab Pro. Some of these measures were more
successful than others, but all were important parts of the learning process. If we could do the
project over again, we would have chosen a task with more pre-existing literature. While there is
literature for image based drowsiness detection, literature was limited for video-based
approaches. This led to the decision of using a well-known general video-based action
recognition architecture that was more efficient than other video-based architectures, but still
presented massive constraints to training due to computational demands. Choosing an
implementation with more task-specific literature would have allowed us to run into smaller,
more directly problems (i.e. we made many changes to address computational bottleneck but
could only do so much with the architectures we chose). Additionally, if we had known how
computationally demanding the task was going to be, we would have put greater effort into
downsizing the data ahead of time. As it was, we reduced image dimensions by cropping and
localizing to the eyes region, but made the design decision to not run the videos through an
extra CNN to maintain data compatibility with the Video Swin architecture. Another thing we may



have done if we did the project over again and still used the Video Swin architecture would be to
have used a small subset of it, which would have allowed us to train with all of the weights as
trainable for the subset we chose, instead of having to use some of the layers pre-trained
weights due to a lack of available compute to train all the layers. That being said, we only know
to make these changes because of the many difficulties we experienced with what seemed like
a relatively simple task at the beginning.

What can we improve on if we had more time?

If we had more time and additional computational resources, we would like to increase the batch
size and let more of the layers be trainable. If we had more time but no additional compute
resources, we would have hard pivoted to an image-based approach that utilized regular
images. We also would have liked to explore techniques that use classifiers that localize the eye
and pupil positions like facial geometry models to see their effectiveness. We chose a
video-based approach over an image-based approach initially because we thought that the
temporal element of image frames would increase accuracy, but the computational demands
ended up ultimately hindering model learning. Similarly, we chose a video-based approach over
a facial-geometry approach because we thought that might cause the model to miss important
data and felt that video-based methods were more similar to how humans naturally recognize
drowsiness.

Biggest Takeaways

Our biggest takeaway from this project is that video data is really hard to work with due to the
computational demands it requires. We also learned that having robust data pipelines is really
important for generalization to real world scenarios. Particularly, in the research community
where many datasets are created in static, lab settings, data augmentation is incredibly
important to create a model that learns robust, meaningful relationships between the data and
labels to make real-world performance possible. The last thing we learned is the difficulty of
applying task-specific datasets to general purpose foundations models, and the difficulty of
applying a dataset to an architecture that wasn’t built for it for any domain and expecting it to
work, even with significant alterations and fine-tuning. We felt that the learning in this project
was informative and invaluable to our understanding of deep learning research and we look
forward to applying these insights in future research.
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