CourseCluster: a distributed course registration system

Alex Lin
Brown University
alex_lin@brown.edu

Abstract

This paper presents the design, implementation, and eval-
uation of CourseCluster, a distributed and scalable course
registration system developed for CS1380 at Brown Univer-
sity. CourseCluster is designed to manage large volumes of
student and course data, ensuring scalability and data con-
sistency across nodes. We deployed our system to Elastic
Compute Cloud (EC2) instances on Amazon Web Services
(AWS) to enhance performance and stability across multiple
nodes, and connected the system to a simple interface.

1 Introduction

In an increasingly digitised world, effective online course
registration systems are a centrepiece of the modern uni-
versity experience. We present CourseCluster, a distributed
system designed to handle the complexities of course reg-
istration at a university level. Our implementation consists
of an architecture intended to support the querying of and
registration for courses by students through a web interface.

Our distributed system is structured around two key datasets:

our courses dataset contains a list of courses offered, includ-
ing its title, course id, subject, description, and prerequisites.
These were scraped from a website hosted by Brown Univer-
sity’s servers. Our students dataset contains a list of artificial
student names, along with their semester level and a list of
courses taken. The list of student names were randomly se-
lected from a list of common first names [1]. These datasets
are each partitioned across a node group.

For simplicity, the system relies on a number of assump-
tions that are typical in academic settings, including the
absence of enrolment limits for courses, and the immutabil-
ity of the authoritative course and student lists. Additionally,
while our system is not designed to handle node failures,
we discuss the possibility for implementing a fault tolerant
system in the future.

The client nodes orchestrate the registration processes.
Once a student submits a registration, the client nodes en-
sure that the student has met the prerequisites and is not
already registered for 5 courses. We implemented a locking
mechanism to ensure atomicity of the registration opera-
tion. Similarly, when a student submits a search request, the
client node is responsible for sending this requests to all the
courses nodes, and aggregating the results. The search op-
eration is implemented using a MapReduce [2] framework,
which generates the capability to scale to a large volume of
concurrent searches without significant performances losses.

Ethan Williams
Brown University
ethan_williams@brown.edu

Ben Bachmann
Brown University
ben_bachmann@brown.edu

We open our discussion in Section 2 with an example user
workflow, and the functionality just outlined is described in
detail in Section 3. Our system also enables users to search
our course catalogue by keyword- Section 4 describes our
implementation of an algorithm inspired by the PageRank
algorithm implemented by Sergey Brin and Larry Page in
1998 at Google [4]. We include the technical details of our
implementation, some design considerations, as well as per-
formance concerns. In Section 5, we discuss the deployment
of our system to run on EC2 instances on AWS. We include
details of the EC2 instances used, the types of nodes hosted
on the AWS infrastructure, and the performance gains. In
Section 6 we discuss our system’s performance against var-
ious metrics, including its ability to handle large volumes
of concurrent requests, and its performance with increased
numbers of nodes. Section 7 discusses the implications of our
system, its limitations, and imagines some ways in which it
could change the landscape of higher-level education. Finally,
in Section 8, we discuss related work.

2 Example

To illustrate the intended usage of our distributed course
registration system, we consider a typical scenario where a
student, Alice, seeks to register for courses at the beginning
of a semester. The entire process occurs through our web
interface.

2.1 User Login

First, Alice submits a login request by entering her student
details into the provided text fields. Provided that she sends
her unique student token as input, she will be logged in
successfully and be able to register for courses for which she
meets the prerequisites and is in the right semester to take.

2.2 Dashboard Functionality and Course Search

Suppose, then, that she is searching for a course on dis-
tributed systems. She will then send a search request, likely
with the keywords ’distributed systems’. The client node
responsible for handling Alice’s request will then send this
query to all the courses nodes, which are responsible for stor-
ing all the course data. These nodes perform a search based
on the MapReduce [2] framework, which efficiently pro-
cesses large datasets by distributing the tasks across multiple
nodes. This framework is designed to handle large volumes
of course data and many student queries simultaneously, as
the demands of large universities require.

Brown CS1380°24, Spring, 2024, Providence, Rl

@

@

Figure 1. CourseCluster architecture

2.3 Aggregation and Display of Search Results

Once the course nodes complete their respective searches,
they send the results back to the client node. The client node
then aggregates these results, and the result returned via the
interface is a list of the courses that most closely match her
query. Each result includes key information such as course
title, description, and prerequisites.

2.4 Course Registration Process

Once Alice decides on a course, she uses the interface to reg-
ister for that course, which initiates a register request. The
system first checks whether Alice has already registered for
the maximum allowed number of courses (five), and whether
she meets all the prerequisites for the course. Assuming that
these conditions are met, the client node communicates with
both student and course nodes in order to lock the registra-
tion. This prevents any registration conflicts that could arise
from multiple students attempting to register for the same
course simultaneously. If the client node successfully obtains
both locks, Alice is registered for her chosen course. The
course node updates its records to include Alice as a regis-
tered student, and the student node updates Alice’s records
to reflect her enrolment in the new course.

3 View and Control

We designed our system to scale to a large number of nodes
and concurrent requests. This section describes the details
of how the system processes requests under the hood.

3.1 Coordinator Nodes

We structured our implementation around two coordinator
nodes, ’authoritativeCourses’ and ’authoritativeStudents’,
which hold the authoritative data regarding courses and
students respectively. For each of these coordinator nodes,
we implemented ’list” and ’detail’ services, which return a
complete list of courses/students and details about a single
course/student respectively.

J. S. Carberry, Alex Lin, Ethan Williams, and Ben Bachmann

3.2 Client and Registration Nodes

Users of our interface talk to a client node. In contrast to the
authoritativeCourses and authoritativeStudent nodes, there
may be many client nodes. This helps to distribute the load.
Finally, there may be any number of ’students’ and ’courses’
nodes. These are equipped with lock and unlock services to
ensure that the registration procedure either succeeds or has
no effect, and with submit and listRegister services which
submit and list all courses associated with a student or vice
versa respectively.

3.3 Scalability

Course registration generally opens for large batches of stu-
dents simultaneously. This leads to course registration re-
quests being heavily clustered towards the hours following
the opening of course registration. It is necessary to ensure
that our system can scale to handle this sudden increase in
requests. We discuss scalability in greater depth in Section 6.

3.4 Fail-Safe Mechanism

In addition, we prioritised a fail-safe system. If a registra-
tion operation fails, the system will enter a state as if that
operation had not occurred. This ensures that at peak hours,
an overloading of requests will not lead the system to break.
Instead, the student may need to make several registration
attempts before the request successfully goes through.

3.5 Interface Design

=
Distributed Courses at Brown

Registration
Student

Course code

Course Search
Search course title, description

Gearch

Info about a specific course
Search
List all courses in a department

Bearch

Figure 2. CourseCluster User Interface

We emphasised simplicity and intuitiveness in our design
of the web interface. The course’s entire functionality, in-
cluding search, login, and registration, is contained within a

CourseCluster: a distributed course registration system

single web page. We subdivided the page into two sections:
‘Registration’ and ’Course Search’. This keeps these two func-
tionalities distinct, whilst ensuring that students can register
simply by entering the correct information into two fields.
In addition, our interface allows students to see the results of
their most recent search under the ’Course Search’ section,
whilst simultaneously submitting a registration request. This
dual functionality within a single web page prevents users
from having to remember or write down the results of a past
search in order to register for their chosen course.

4 Search

Given the large number of courses offered in a typical uni-
versity, it is necessary to develop a sophisticated search al-
gorithm in order to effectively be able to retrieve course
that best match the user’s wishes. To achieve this, we imple-
mented an algorithm inspired by the PageRank algorithm [4],
combined with indexing and data distribution techniques.
This section describes the key features of our implementa-
tion.

4.1 Adapting PageRank for Searching Course
Catalogues

The PageRank algorithm was first invented by Sergey Brin
and Larry Page in 1998 to rank the importance of web pages
based on their link structures, word frequencies, and inverse
document frequencies. We have adapted their approach for
our search endpoint within CourseCluster, enabling users to
search by a text query, for a specific course, or by academic
department.

4.2 TF-IDF and Stemming

We used the Term Frequency-Inverse Document Frequency
(TE-IDF) metric in our system to improve the precision of our
search results. This method allows us to rank pages with a
greater frequency of the query term as more closely matching
the intent behind the user’s query, whilst also considering
the frequency of the term in relation to other documents,
in order to determine whether a term is important for a
document in particular, or whether the term is a generally
common word across all documents. Using stemming tech-
niques, we reduced words to their base form, to allow for
different grammatical forms of words with near-identical
meaning.

4.3 Indexing Courses

We concatenate the course name and description, and run our
search query against this index. When a query is received,
the system matches it against this index.

4.4 Consistent hashing

We partitioned our datasets across two node groups: ’courses’
to store course data, and ’students’ to store student data. This

Brown CS1380°24, Spring, 2024, Providence, Rl

ensures that the storage is evenly balanced across the nodes.
We used a consistent hashing scheme to ensure that each
shard of data gets mapped to the same node, ensuring that
the overall state of the system is coherent between the nodes.

4.5 Scalability

Course lists at any modern university are generally published
on a prespecified date. This leads to a substantial increase in
the number of searches made in the hours that follow. We
therefore designed our system to be able to handle a large
number of request in as short a time as possible without
breaking. We achieved this through the deployment of our
system on cloud services, as described in Section 5.

4.6 Design Considerations

A key assumption of our system is that the course and stu-
dents lists do not change. Our search algorithm therefore
always operates against the same index. In order to account
for incoming or outgoing students, for course addition or
deletion, updating the course description, correcting a mis-
spelt student name, and so on, we would need to devise a set
of endpoints for adding, deleting, and updating these fields,
and implement an appropriate mechanism to add the new
student or course data to the correct shard, whilst ensuring
that all nodes agree on the state of the system.

5 Deployment

We deployed eleven nodes- one authoritativeCourses, one
authoritativeStudent, three Student, three Courses, and three
Client- on FElastic Cloud Compute (EC2) instances on Ama-
zon Web Services (AWS). We discuss performance gains due
to our deployment in Section 6. We used EC2 Micro instances,
since these are a cost-effective solution suited to low-traffic
scenarios. In order to scale to larger numbers of students, we
would consider using larger EC2 instances for our nodes.

6 Evaluation

Our system requires an authoritativeCourses and authorita-
tiveStudent node, as well as at least one client node for the
user to interact with. We tested our system with variable
numbers of client, student, and course nodes and measured
the relative performance across these different configura-
tions.

6.1 Registration Throughput

We measured the throughput of our registration system with
one, two, and three client nodes. For each number of client
nodes, we measured the throughput with one, two, and three
(of each) course and student nodes. We found that additional
client nodes substantially improved throughput, whereas
increasing the number of student and course nodes had a
minimal effect on throughput. Using three client nodes, the

Brown CS1380°24, Spring, 2024, Providence, Rl

Registration Throughput (registration/s) (mean 1000 trials)

B 1 course, 1 student nodes B 2 course, 2 student nodes 3 course, 3 student nodes

300

200

100

0

1 Client 2 Client 3 Client

Figure 3. Registration Throughput

average number of registrations per second, measured across
1000 trials, was 260.

6.2 Query Throughput

Query Throughput (query/s) (mean 100 trials)

B 1 course, 1 student nodes B 2 course, 2 student nodes 3 course, 3 student nodes

20

15

0

1 Client 2 Client 3 Client

Figure 4. Query Throughput

We measured the throughput of our query system in simi-
lar fashion to our measurement of registration throughput.
We found once again that increasing the number of client
nodes substantially improved throughput, whereas we found
no statistically significant effect of scaling up from one stu-
dent and one course node to three student and three course
nodes. For 3 client nodes, the average number of queries
handled per second, measured across 100 trials, was 19.

6.3 Registration Latency

We measured the latency of our registration system over 1000
trials. Over 95 percent of our trials were processed within
30ms, with the majority being processed within 23ms. We
experienced a few outliers that took over 100ms to process.

J. S. Carberry, Alex Lin, Ethan Williams, and Ben Bachmann

Registration Latency Spectrum

500

400

=)
(=3
2 300
s
3
— 200
3
g
@
g
g,' 100
w
0 S -
NN NC OO PR NP LR ORI IVINN OO RRRE - ©
MUNRONOOMONY-COQVAROMONT QW OLNRQO
TTANNDTOUOODONNODNDO - - NMT ITWOONDODNDOO —OM
NNNNNNNNNNNNNNmmmMmﬂmmmmmmmmﬂvvﬁ
Latency (ms)
Figure 5. Registration Latency
Query Latency Spectrum
500
400
8 300
o
e
s
3 200
€
3
o 100
0 [111 ll- PYT S l
58555555555555555555555 513
D © O O W ® W 0 W W M W W W W © ® W W O ©V P © ©
W OO - N O F 1V O KN 0D O T N O F LV O N 0 D O =
- T T T v - - = = = NN NN NN NN NNO o™
Latency (ms)

Figure 6. Query Latency

6.4 Query Latency

We also measured the latency of our query system over 1000
trials. Results were more variable than for our registration
system. The majority of queries were processed in under
100ms, though some took 200ms, and a few outliers took
over 300ms.

6.5 Benchmarks

Table 1. Course Cluster Search, Query, and Registration Benchmarks On Different Node Configurations

1client, 1| 1client, 2|1 client, 3| 2 client, 1| 2client, 2| 2 client, 3| 3client, 1 | 3 client, 2| 3 client, 3
Requests search, 1 | search,2 | search, 3 | search, 1 | search, 2 | search, 3 | search, 1 | search,2 | search,3
course | course | course | course | course | course | course | course | course

Search: "CSCI 1380"

1] 64.62 47.88 55.50 5148 58.78 45.26 48.32
100 977.30 113062 1.284.51 665.90 780.64 828.58 508.87 527.89 552.87|

Query: ‘distributed systems'
10] 1.480.04 239218 139767 126794 140539 126193 150402 113605 112103
100| 856271 1056853 970396 736190 588458 685301 516452 532276 532310

Registration

1] 100.07 62.16 59.27 101.67 6525 64.75 50.94 64.12 54.32
100] 1.297.12 114326 1.247.43 619.03 68746 480594 506.85 44443 401.58,

1000] 803295 803947 816219 4,973.94 485022 501511 405119 379815 3.646.23

Time to complete (ms)

Figure 7. Search, Query, and Registration Benchmarks

CourseCluster: a distributed course registration system

Table 2. Course Cluster Cold Start Benchmarks On Different Node Configurations

'1client, | 1 client, | 1client, | 2 client, | 2 client, | 2 client, | 3client, | 3 client, | 3 client,
1search, 2search,|3 search, 1search, 2search,|3search,| 1search, 2search, 3search,

1 course | 2 course | 3 course | 1 course | 2 course | 3 course | 1 course ' 2 course | 3 course

8.516.54 | 7.621.84 772008 834901 725073 7.583.58 8.453.30 7,193.80 8.031.38

Time to complete (ms)

Figure 8. Cold Start Benchmarks

Figures 5 and 6 display benchmarks for cold starting the
system, as well as for the search, query, and registration op-
erations. We find no statistically significant difference in the
cold start time for different numbers of client nodes, suggest-
ing that while distributing the load across additional nodes
improves performance, there are additional overhead costs
to introducing more client nodes. However, adding an extra
student and course node tends to yield a moderate cold start
performance improvement. For the benchmarks, we find sub-
stantial performance improvements associated with adding
extra client nodes, across all three operations. In addition,
we see that the time for the requests to complete scales faster
than linearly with the number of requests, indicating that
distributing our operations across multiple nodes enables
our system to scale. While we do no not know the upper limit
of the number of concurrent requests our system can handle,
with three client nodes, our systems is able to register 1000
students within 4 seconds.

7 Discussion

Whilst CourseCluster is impressive as an end-to-end prod-
uct, we recognise the potential for added features, broader
applications, and other improvements. This section discusses
some future directions for our distributed course registration
system.

7.1 Improved Search

In future versions, we would add functionality to search
based on multiple parameters. For example, one might search
simultaneously by subject and a text query. This would help
improve results. Consider the case where a student searches
for the term ’CSCI1380’. Clearly in this case, the user wants
to find the course in the CSCI department with ID 1380.
However, if there is another course with the string *CSCI1380’
listed in its metadata, such as in its prerequisites, these could
nevertheless appear first in the search results.

7.2 Future of Education

Before the internet became widespread, course registration
at universities was generally done in person. Students would
fill out paper forms and submit them to a registration office,
often involving long queues and a large volume of error-
prone work by representatives entering students’ names in
rosters. Our distributed course registration system increases

Brown CS1380°24, Spring, 2024, Providence, Rl

the efficiency of these administrative processes within uni-
versities.

We also see the potential for a transformation of the na-
ture of education more broadly, such that administrative
processes would be made more efficient not just within uni-
versities but between them as well. Given improved search
results, and improved scalability, one could imagine our sys-
tem scaling to millions of nodes or more. This could enable
the distribution of our course registration system amongst
not just the nodes of a single university, but nodes from
multiple different universities. This could be leveraged in
a large, online university, where students from all over the
world can register for courses offered at thousands of insti-
tutions. Prospective students would be able to filter by insti-
tution, subject, keywords, professor, time zone, and much
more, to find a course that fits their wishes precisely. Such a
system would have an orders of magnitude increase in the
subjects available for people to study. Further, it would help
match professors who teach more niche subjects and there-
fore struggle to find a large audience for their classes locally
and therefore fail to get the course approved for teaching by
the authorities.

7.3 Machine Learning Integration

Predictive analytics could be used to forecast course popular-
ity and thus aid in the decision-making behind what courses
are offered. It could also be used to improve the search expe-
rience for users. By storing a student’s course history, an ML
algorithm could be used to predict what courses a student is
likely to be interested in, and push those courses up in the
search results ranking. The course catalogue could thus be
made to function like a recommendation system.

7.4 Improved User Experience

The web interface could be built out to include more so-
phisticated user flows, and other features. Future versions
could include advanced search features, such as autocom-
plete suggestions based on a student’s search history, as well
as personalised recommendations based on a student’s con-
centration and academic history. Future versions should also
integrate two-factor authentication (2FA), and other protec-
tion for student data privacy. In addition, future versions
could include a real-time notification system to inform stu-
dents of academic deadlines, and other information relating
to their studies.

8 Related Work

CourseCluster draws on seminal works from a variety of
fields within and related to distributed systems. We stud-
ied Hamilton’s 2007 paper [3] as we were making design
choices and considering tradeoffs between scalability and
performance. Brin and Page’s PageRank algorithm [4] was
the fundamental inspiration for our own search engine. Dean

Brown CS1380°24, Spring, 2024, Providence, Rl

and Ghemawat’s work on the MapReduce framework [2]
laid the foundation for our data processing capabilities.

9 Conclusion

In this paper, we presented a distributed course registration
system designed to handle the most important demands
of a modern educational institution. Our system included
functionality for course registration, as well as to search
the course database by keyword. We demonstrated that the
system could scale to handle a large number of concurrent
requests and across dozens of nodes.
Some things we learned are:

1. the importance of rigorous synchronisation and trans-
action protocols to ensure data consistency across
nodes,

2. the importance of effectively balancing performance
and complexity depending on the use-case, and

3. the complexity involved in building a search engine
that consistently returns the results that the user is
looking for.

We have open-sourced our implementation. The full code
can be found at this link: https://github.com/EtomicBomb/
distributed-systems-final-project

References

[1] Arul John. n.d.. Popular Baby Names. GitHub repository. https:
//github.com/aruljohn/popular-baby-names

[2] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation - Volume 6.
10.

[3] James Hamilton. 2007. On Designing and Deploying Internet-Scale
Services. Windows Live Services Platform (2007).

[4] Larry Page and Sergey Brin. 1998. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer Networks and ISDN Systems
30, 1-7 (1998), 107-117.

A Reflections

Hours for paper: <25>

B Using our System

Our system is available on the link http://52.87.235.205/ Note
that due to cost limitations, we cannot run our EC2 instances
indefinitely, so this link will no longer be available after a
certain timeframe.

J. S. Carberry, Alex Lin, Ethan Williams, and Ben Bachmann

https://github.com/EtomicBomb/
distributed-systems-final-project
https://github.com/aruljohn/popular-baby-names
https://github.com/aruljohn/popular-baby-names
http://52.87.235.205/

	Abstract
	1 Introduction
	2 Example
	2.1 User Login
	2.2 Dashboard Functionality and Course Search
	2.3 Aggregation and Display of Search Results
	2.4 Course Registration Process

	3 View and Control
	3.1 Coordinator Nodes
	3.2 Client and Registration Nodes
	3.3 Scalability
	3.4 Fail-Safe Mechanism
	3.5 Interface Design

	4 Search
	4.1 Adapting PageRank for Searching Course Catalogues
	4.2 TF-IDF and Stemming
	4.3 Indexing Courses
	4.4 Consistent hashing
	4.5 Scalability
	4.6 Design Considerations

	5 Deployment
	6 Evaluation
	6.1 Registration Throughput
	6.2 Query Throughput
	6.3 Registration Latency
	6.4 Query Latency
	6.5 Benchmarks

	7 Discussion
	7.1 Improved Search
	7.2 Future of Education
	7.3 Machine Learning Integration
	7.4 Improved User Experience

	8 Related Work
	9 Conclusion
	References
	A Reflections
	B Using our System

