
CSCI 1430 Final Project Report:
Color Me This

Team: Nada Benabla (nbenabla), Yipu Gao (bgao9), Ethan Williams (ewilli51)
TA: Joel Manasseh
Brown University

Abstract

Given a grayscale image as input, we attempt to provide
an estimation of the image’s RGB colors, with the help of
user-guided color hints.

We implement automatic colorization using a CNN
encoder-decoder architecture combined with a pre-trained
Inception-ResNet-V2 model for feature extraction. The auto-
matic colorization is then used to generate a palette of five
suggested colors via K-means clustering. The user can then
input color hints onto the grayscale image, which are fed
into a U-Net architecture to generate a colorized output in
real-time in a user interface that we provide. The output of
user-hint model is conditioned on an arbitrary number of
hints provided.

1. Introduction

Color plays an important role in conveying information.
As such, the aim of colorization can range anywhere from
making an image more visually appealing, offering a new
perspective, giving a glimpse of history, or perhaps simply al-
lowing your grandparents to go on a vivid trip down memory
lane.

For this purpose, we have chosen to address a subset of
image colorization—flower colorization. In flower coloriza-
tion, the color channels of a grayscale image of a flower are
predicted. By tackling flower colorization, we intend to de-
liver transferable results with the limited training resources
available to us. The hope is that the colorization network
can learn basic patterns: that grass is green, the sky is blue,
etc. while respecting the multi-modal nature of flower color.
Additionally, a model that excels at colorizing flowers may
be moderately transferable to other domains by recogniz-
ing features shared across all natural images; namely object
boundaries and color gradients.

In order to address the above-mentioned multi-modal na-
ture of flower colors, we’ve chosen to integrate user hints.
We condition our output images on points and correspond-

ing colors that users provide. The hope is for the model to
propagate the user hints to color entire objects, making it
convenient to color general natural images.

Because of our integration of user hints, images with color
that’s already known can still be converted to grayscale and
used as an input with our model. This enables images to be
recolored; a task that’s normally very time-consuming. Users
can provide sparse color hints that do not reflect the ground
truth image and still end up with creative colorizations.

2. Related Work

Our approach for user-guided colorization is heavily in-
spired by [8]. This group tackles general image colorization,
while we focus narrowly on flowers. In their model, they
have a user hints model, a global hints model, and a palette
selection model. Their palette selection model is per-pixel,
while we provide a palette for the entire image. Our user
hints model is significantly similar to theirs. We have not in-
cluded a global hints model. The most significant difference
between our user hints model and their user hints model is
that the specifics of our model architecture are significantly
different—we use a different technique to downsample, up-
sample, and integrate the residual connections. [8] uses sub-
sampling and elementwise addition, while we use strided
convolutions. In addition, we sample the user hints in the
synthetic user hint generation from a Gaussian centered at
the hint point, while [8] takes an unweighted average. In
total, this makes our user hint model more sophisticated.

On the other hand, the model architecture for automatic
colorization is based on the Deep Koalarization paper by
Baldassarre et al. (2017) [1], as well as Wallner’s article on
Colorizing B&W Photos with Neural Networks [7]

3. Method

Our project is split into two parts: Automatic Coloriza-
tion with CNN and Inception-ResNet-V2 and User-guided
colorization with U-net.

1



3.1. Automatic Colorization

Figure 1. CNN with Inception-ResNet-V2. This architecture is
owed to [1]

After preprocessing, a grayscale input image first runs
through an encoder which consists of 8 convolutional layers.
In parallel, the input image (resized to 299x299) also goes
through a pre-trained Inception model (pre-trained on 1.2M
images from Imagenet). The Inception model acts as a high-
level feature extractor for the image content. We retrieve
an embedding of the gray-scale image from the last layer
and concatenate it with the encoder’s output via the fusion
layer. The output of the fusion layer is fed into a decoder
model which consists of a succession of convolutional and
upsampling layers as shown in figure 1. Each convolution
layer uses a ReLu activation function, while the decoder’s
last layer uses a hyperbolic tangent activation function. We
experimented with adding a few batch normalization layers,
but this idea was dismissed as they hindered the overall
performance during training.

The input images were represented in the CIE L*a*b
color space. This choice, as outlined in [1], separates the
color characteristics from the lightness component and has
the benefit of increasing the level of detail in the output
images.

To aid learning, data augmentation was implemented.
These augmentations include shear transformations, zoom-
ing, rotations, horizontal flipping, width shifting, height shift-
ing, and a nearest neighbor fill mode.

Because the results of automatic colorization are known to
be rather desaturated and slightly faded, image enhancement
was added to the output images.

Gamma correction [5] was used to adjust the brightness
of the image. This was done by building a lookup table
that maps each pixel value to its adjusted gamma value. In
addition, the RGB colors were lightened by a coefficient of
20% before being displayed to the user, by multiplying the
value of the image’s red, green and blue channels by that
coefficient.

Finally, K-means clustering was used to extract the top
five most dominant colors in the output picture. These colors
were used to populate a palette of suggested colors, meant
to guide the user in choosing color hints.

Figure 2. Color palette with top 5 suggested colors

3.2. User hints model

After a user chooses colors from the automatically gener-
ated palette and specifies the spatial location, the remainder
of the colorization task is carried out by the user hints model.
The input to the user hints model is a grayscale image, a
Python list of image coordinates and their associated list of
RGB colors of the same length. The output of the user hints
model is the predicted RGB image. The greyscale image is
downsampled to a convenient size, chosen to be 224x224.
The next task of the user hints model is to encode the hints
into a format that can be processed by a convolutional neu-
ral network. Three channels with the same dimensions as
the grayscale image are generated: a binary hint mask, and
two color hint channels. The hint mask takes the value true
within a radius (which is a tunable hyperparameter) of each
of the hint points. The RGB colors are converted into the
YCbCr format, and the two color channels (Cb and Cr) are
taken. The color hints are plotted on each of the respective
color hint channels. The two color hint channels have the
value zero where the hint mask is false. The output of the
model is the two predicted Cb and Cr channels, which are
combined with the input grayscale, converted to RGB, and
delivered to the user. The convolutional neural network is
a purely convolutional U-net, inspired and tuned from an
example used for image denoising [3].

The training was conducted using flower images taken
from the Oxford Flowers 102 [4] dataset. These images were
converted to grayscale (the Y channel of the YCbCr image
encoding), and synthetic user hints were picked. The number
of hints was taken from a geometric distribution (whose pa-
rameter is a tunable hyperparameter of the model; 0.10 was
chosen), and the hint locations were sampled from a normal
distribution with the mean being the image center. The color
at each hint location was sampled around each hint point,
weighted using a normal distribution (whose standard devi-
ation is a tunable hyperparameter; 2 chosen). Occasionally
(the frequency is a tunable hyperparameter; 5% chosen), the
entire image is revealed as a hint, with the same justification
as [8]. A 90%-10% training-testing split was selected for the
dataset. For every training example, we hope to learn the
entire Cb and Cr channels of the input image.

3.3. User Interface

We incorporate the above-mentioned elements into an
Interactive User Interface that allows the user to upload an
image (in colors or grayscale), input color hints from either



the suggested color palette (2) or an RGB color picker, and
see colorized outputs in real-time.

Figure 3. UI welcome page. The user is prompted to upload a
grayscale image or a colored image. If they choose the latter, they
are redirected to the page shown in figure 4 which displays the
original ground truth image, along with its grayscale version.

Figure 4. UI for uploading image in colors. Result of automatic
colorization (no color hints)

The front-end was built with a combination of JavaScript
and HTML/CSS. Frontend/Backend communication was
established with API calls serviced through a Flask app and
JavaScript’s Fetch API.

Initial automatic colorization is presented through click-
ing the ”Colorize” button, while the user-guided colorization
is delivered in real-time. Whenever the user inputs a color
hint onto the gray-scale image, an API call is made to retrieve
the colorized output and display it to the user.

4. Results and Discussion

The CNN model for automatic colorization was trained
on the Tensorflow Flowers dataset [6], which consists of
3670 flower images. Training was conducted for about 18-20
hours, for 800 epochs with 8 steps per epoch, followed by
250 epochs with 20 steps per epoch, with a batch size of 20.
A learning rate of 1e− 5 was maintained through training.
An Adam optimizer was used initially with a Root Mean
Square Error (RMS), before switching to Mean Square Error
(MSE). It is to be noted that the switch of loss function did
not result in a significant performance improvement.

A testing accuracy of about 78% was reached with a loss
at 0.025.

Figure 5. Number of parameters for CNN model

Figure 6. Some results of automatic colorization with
CNN/Inception-ResNet-V2.

The results of automatic colorization (6) are of varying
quality depending on the image. In general, the model could
successfully recognize the sky and discern flowers from
grass. We noted that the model yielded the most realistic
results when the ground truth image contained shades of
yellow. This could be attributed to the prevalence of yellow
flowers in the training dataset. Some of the results could
also be explained by the small size of the dataset, and the
limited GPU resources for training. Nonetheless, despite the
imperfections (e.g. graphic artifacts, color splotches) in the
colorized results, these images can serve as a valuable start-
ing point for guiding users in choosing how to (re)colorize
their image.

As for the user-guided model, its primary use is to accu-
rately recolor images of flowers. A flower with a flat back-
ground was selected for this demonstration, and user hints



were added in locations of the image that were colored partic-
ularly inaccurately 7. After iteratively selecting 4 points and
their corresponding colors, the model was able to reproduce
the dominant objects in the image. Adding additional hints
increases the accuracy of the reproduction, for example.

Figure 7. The model’s response to multiple hints.

One of the stated goals of the model is image recoloriza-
tion: the ability to produce images with colors that are differ-
ent from the ground truth image. A flower with a relatively
flat grayscale profile and black background was chosen for
demonstration purposes, and 6 colors were chosen to test
the model’s ability of the model to produce different colors
8. Subjectively, the model is able to integrate a single hint
into the image of the flower in a way that looks realistic,
despite there being few green flowers in the training dataset,
for example.

Figure 8. Providing a single color hint to the model. A range of
colors were used for the hint. Note, the leaf in the background is
occasionally colored green (even without being hinted), and the
center of the green flower is yellow, closely matching the ground
truth image.

4 64

64 128

128 256

256 512

512 512

512 512

256
+
256

256

128 128

64 64 2

GroupNorm ReLU

k 2k

Conv2D GroupNorm ReLU Conv2D

k

k/2

Conv2DTranspose

GroupNorm

ReLU64 2

Conv2D Sigmoid

k k+l

Concat

k

k

Conv2D 
(stride=2) 

GroupNorm

Figure 9. User hint model architecture overview. The key to the
arrow meaning is provided below.

4.1. Hyper-parameters tuning

Researchers also conducted a series of testing based on
different values of hyper-parameters of the model. The result
is summarized in Tables 1 and 2. Figure 11 is an image
generated by Tensorboard to show the performance of the
model with different hyper-parameters in 20 epochs.

4.1.1 Connecting layers

Type of Connection best acc best loss

Only Upper 0.7983 0.0022
Upper and Middle 0.8053 0.0019
Full Connection 0.8104 0.0018
Non Connection 0.7640 0.0028

4.1.2 Regularization Techniques

Regularization used best acc best loss

Dropout with 0.25 0.8024 0.0021
Dropout with 0.5 0.7526 0.0039

Max-pooling 0.7477 0.0057
Non regularizer 0.7640 0.0028



Figure 10. Performance for the model under different hyper-
parameters.

4.2. Transfer

As explained previously, our models were exclusively
trained on flower images. That being said, our dataset has
significant overlap with general natural images. One of the
biggest technical problems that the model has to solve is
propagating user hint information from the small hint point
to the boundary of the object the user intended to hint at.
Because of that, our model is forced to learn object boundary
detection, a skill that’s transferable to any natural image.
One image 11 shows a particularly strong example, in which
the model has learned to segment the head of a dog. In this
example, no user hints were provided, so naive colorization
is presented. While the dog’s head does not match the ground
truth, it is clear that the model was able to segment the image.

Figure 11. Dog colorized, no hints. It appears that the model analo-
gized the dog’s head to a flower’s head. Amusingly, the eyes are
colored accurately, and the dog’s leafy ears are greenish at the tips.

With hints, our model can successfully be used to colorize
images of dogs 13. One suspected reason that our model has
any success in colorizing images that are so far outside of the
domain is that these images are relatively flat in color and fea-
ture significant grass, like the training data. Images outside
of the training distribution, particularly those with subjects
that are not flowers, are not colored accurately without hints.
In general, with a dozen hints, our model can colorize simple
natural images in a way that looks convincing.

Figure 12. Golden retriever colored automatically without hints.

Figure 13. Golden retriever colored with hints.

4.3. Socially-responsible Computing Discussion via
Proposal Swap

A concern the authors received about our colorization
system is that recoloring images could reveal sensitive in-
formation that is hidden in the true colorization. It is true
that this is a common problem in photo editing systems – by
brightening an image or changing the contrast, fine transi-
tions between dark shades can be come visible and reveal
text or other image details that were thought by the photog-
rapher to be in absolute shadow. Our system is unlikely to
reveal these details. We duplicate the luminance channel of
the input image in the output. That means our result images
have the same perceptual brightness and luminance contrast
as the input image. Any color contrast in our output is en-
tirely fabricated by our model and does not reflect detail
from the ground truth image.

A second concern the authors received is that the output
of our model could reproduce whatever bias is present in
the training set. In particular, the concern is that users may
feel that they are not represented in their race or setting is
not reproduced accurately. The suggestion provided in the
concern is to notify our users of known biases in the result
of the model. Since our models were trained exclusively on
images of flowers, bias from human skin in the training data
will not be present. However, conceivably, our models could
coincidentally color some images of humans less accurately
than others. The behavior of our models on these images out-
side of the training distribution (particularly images featuring
humans or man-made settings) is unpredictable. In order to
address this concern, it is essential that before deploying
this model, experiments be conducted feeding our model a
diverse set of images. Consistent patterns or egregious col-
orizations could be identified. If need be, our model could
be fine-tuned on a diverse set of images in order to improve



the accuracy in these scenarios. A disclaimer explaining the
training dataset and limitations is warranted.

A third concern the authors received is that in obtain-
ing our dataset and training our models, we may waste a
large amount of energy. There was an insignificant energy
cost in obtaining the dataset, as we downloaded datasets
[4] [6] constructed by others. The concern with training is
warranted, as our models are particularly large: some with
several dozens of millions of parameters. Because of their
large size, a significant amount of time and energy was spent
training. The authors are emotionally divorced from this cost
because the training was done remotely on machines owned
by the Brown CS department, Amazon, and Google. While
training our models has undoubtedly caused untold environ-
mental damage, there is a silver lining. Since our models are
particularly good at recoloring natural scenes, we can assist
in producing images that are effective at communicating the
inherent beauty of nature and the need to keep fossil fuels in
the ground. For this reason, the authors believe that the net
impact of their work is positive for the environment.

5. Conclusion

In conclusion, we produced a dynamic image colorization
system that has moderate success in colorizing images with
no hints and is able to produce realistic results conditioned
on provided user hints for a variety of natural images. We
conclude that some degree of human intervention in the form
of user-guided color hints serves the task of colorization well,
and yields promising results.

References
[1] Federico Baldassarre, Diego Gonzalez Morin, and Lucas

Rodes-Guirao. Deep koalarization: Image colorization using
cnns and inception-resnet-v2, 2017. 1, 2

[2] Fastai. Fastai/imagenette: A smaller subset of 10 easily classi-
fied classes from imagenet, and a little more french. 6

[3] Rina Komatsu and Tad Gonsalves. Comparing u-net based
models for denoising color images. AI, 1(4):465–486, 2020. 2

[4] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In In-
dian Conference on Computer Vision, Graphics and Image
Processing, Dec 2008. 2, 6

[5] Adrian Rosebrock. Opencv gamma correction.
https://pyimagesearch.com/2015/10/05/
opencv-gamma-correction/, 2015. 2

[6] The TensorFlow Team. Flowers, jan 2019. 3, 6

[7] Emil Wallner. Colorizing b and w photos with neural networks,
Aug 2019. 1

[8] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful
image colorization, 2016. 1, 2

Appendix
Team contributions

Ethan Williams Ethan was responsible for architecting the
user hints model. He found flower datasets, wrote code
to sample the image color around user points, generated
a user hints encoding to feed to the neural network,
and created a dataset from flower images and synthetic
user points. After Yipu implemented the model from
the paper, Ethan reduced the size to be trainable on the
available hardware.

Yipu Gao Yipu was responsible for building and training
the fundamental model and comparing model perfor-
mances under different hyper-parameters. In order to
find the best model under the computational bound,
Yipu tried different types of regularization terms, tried
different methods of downsampling, and tested out the
performance for connecting layers. Last but not least,
Yipu tried to use the pre-trained weights from the origi-
nal paper to reduce the number of trainable parameters
needed for the model, but the conversion between pth
to pb (from PyTorch weights to TensorFlow weights)
was just too difficult to accomplish.

Nada Benabla Nada was responsible for implementating
the User Interface, and setting up the APIs to establish
a connection between the front-end and the back-end
colorization algorithms. She implemented and trained
the CNN encoder-decoder model with the pre-trained
Inception-ResNet-V2 model for automatic colorization,
and used K-Means clustering to generate a suggested
color palette. She first trained the model on ImageNette
and ImageWoof [2] (both subsets of ImageNet), be-
fore switching to a smaller flowers dataset. She used
some image enhancement techniques such as gamma
correction to improve the suggested color palette.

https://pyimagesearch.com/2015/10/05/opencv-gamma-correction/
https://pyimagesearch.com/2015/10/05/opencv-gamma-correction/

